Научный журнал Байкальского государственного университета
System Analysis &
Mathematical Modeling
Издается с 2019 года

Информация о статье

Название статьи:

Shaping of Magnetospheric Disturbances by System Behaviour of Geomagnetic Tail

Moldavanov A.V., PhD in Physical and Mathematical Sciences, Senior Engineer, Belkin International Inc, Los-Angeles, USA, trandrei8@gmail.com
В рубрике:
Год: 2022 Том: 4 Номер журнала: 4
Страницы: 302-316
Тип статьи: Научная статья
УДК: 53.02
DOI: 10.17150/2713-1734.2022.4(4).302-316
Development of magnetospheric substorm from standpoint of energy evolution in geomagnetic tail is considered. In this approach, geomagnetic tail is taken to be an open thermodynamic system with infinite number of conservation energy links to external space environment. Self-consistent general theory of energy evolution in such system was presented earlier. In contrast to existing models of substorm development, presented model suggests believing that development is a combined effect of two influence factors. The first one is the traditional southward turn of interplanetary magnetic field (IMF) Bz resulting in the intensification of energy exchange between the tail and externals. The second agent is determined by physics of energy evolution in abovementioned system leading to the well-known structure of substorm. Intercoupling between these agents can produce different forms of magnetospheric activity including substorms. Explanation of essentials for system mechanisms beyond the known substorm signatures and comparison with the typical substorm features is also provided.
Ключевые слова: geomagnetic tail, energy evolution, probabilistic mechanism, thermodynamic system, substorm phase
Список цитируемой литературы:
  • Russell C.T. The Solar Wind Interaction with the Earth's Magnetosphere: a Tutorial. IEEE Transactions on Plasma Science, 2000, vol. 28, no. 6, pp. 1818-1830. DOI: 10.1109/27.902211.
  • McPherron R.L. Magnetospheric Substorms. Reviews of Geophysics and Space Physics, 1979, vol. 17, iss. 4, pp. 657-681.
  • Chapman S., Bartels J. Geomagnetism. Oxford University Press, 1940. 1049 p.
  • Lopez E.R. Magnetospheric substorms. Johns Hopkins APL Technical Digest, 1990, vol. 11, no. 3-4, pp. 264-271.
  • Dungey J.W. Interplanetary Magnetic Field and the Auroral Zones. Physical Review Letters, 1961, vol. 6, iss. 2, pp. 47-48. DOI: 10.1103/physrevlett.6.47.
  • Hesse M., Cassak P.A. Magnetic Reconnection in the Space Sciences: Past, Present, and Future. Journal of Geophysical Research, 2020, vol. 125, iss. 2. DOI: 10.1029/2018ja025935.
  • Rostoker G., Akasofu S.I., Baumjohann W., Kamide Y., and McPherron R.L. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms. Space Science Reviews, 1988, vol. 46, pp. 93-111. DOI: 10.1007/BF00173876.
  • Kamide Y., Perreault P.D., Akasofu S.-I., Winningham J.D. Dependence of Substorm Occurrence Probability on the Interplanetary Magnetic Field and on the Size of the Auroral Oval. Journal of Geophysical Research, 1977, vol. 82, iss. 35, pp. 5521-5528. DOI: 10.1029/JA082i035p05521.
  • McPherron R.L., Russell C.T., Aubry M.P. Satellite Studies of Magnetospheric Substorms on August 15, 1968: 9. Phenomenological Model for Substorms. Journal of Geophysical Research, 1973, vol. 78, no. 16, pp. 3131-3149.
  • Rostoker G., Eastman T. A boundary layer model for magnetospheric substorms. Journal of Geophysical Research. Space Physics, 1987, vol. 92, iss. A11, pp. 12187-12201.
  • Kan J.R. A Global Magnetosphere-Ionosphere Coupling Model of Substorms. Journal of Geophysical Research. Space Physics, 1993, vol. 98, iss. A10, pp. 17263-17275.
  • Goertz C.K., Smith R.A. The Thermal Catastrophe Model of Substorms. Journal of Geophysical Research, 1989, vol. 94.
  • Valdivia J.A., Klimas A., Vassiliadis D., Uritsky V., Takalo J. Self-Organization in a Current Sheet Model. Space Science Reviews, 2003, vol. 107, pp. 515-522.
  • Consolini G., De Michelis P., Kretzschmar M. A Thermodynamic Approach to the Magnetospheric Complexity: The Role of Fluctuations. Space Science Reviews, 2006, vol. 122, pp. 293-299.
  • Moldavanov A. Randomized Continuity Equation Model of Energy Transport in Open System. In AMSM 2017: Proceedings of the 2017 2nd International Conference on Applied Mathematics, Simulation and Modelling. 2017, pp. 258-265. DOI: 10.12783/DTETR/AMSM2017/14854.
  • Moldavanov A.V. Topology of Organized Chaos. Moscow, Fizmatkniga, Publ., 2020. 66 p.
  • Kalegaev V.V., Alekseev I.I., Kropotkin A.P. Magnetic storms and magnetospheric substorms. Availble at: http://nuclphys.sinp.msu.ru/magn/magn1.htm
  • Lui A.T.Y. A Synthesis of Magnetospheric Substorm Models. Journal of Geophysical Research. Space Physics, 1991, vol. 96, iss. A2, pp. 1849-1856. DOI: 10.1029/90JA02430.
  • Siscoe G.L., Slavin J.A., Smith E.J., Tsurutani B.T., Jones D.E., Mendis D.A. Statics and Dynamics of Giacobini-Zinner Magnetic Tail. Geophysical Research Letters, 1986, vol. 13, iss. 3, pp. 287-290.